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Objectives: Any change in the sintering process can directly affect the micro-
structure and properties of zirconia. This study sought to assess the effect of 
sintering temperature on flexural strength of IPS e.max ZirCAD MO Ivoclar (EZI) and 
CopraSmile White Peaks Symphony (WPS) zirconia blocks.  

Materials and Methods: In this in vitro, experimental study, 30 EZI and 30 WPS 
zirconia blocks measuring 10 x 10 x 1 mm were milled and sintered at 1440, 1500 
and 1530°C in three subgroups. The flexural strength of the specimens was measured 
by a testing machine with piston-on-3-ball method according to ISO2015. Data were 
analyzed using one-way ANOVA.  

Results: The mean flexural strength was 1.31±0.49, 1.09±0.24 and 1.29±0.48 MPa in 
1440, 1500, and 1530°C subgroups of EZI, and 1.44±0.61, 1.18±0.35, and 1.33±0.54 
MPa in 1440, 1500, and 1530°C subgroups of WPS zirconia, respectively. Two-way 
ANOVA revealed that the effects of zirconia type (P=0.484), temperature (P=0.258) 
and their interaction (P=0.957) on flexural strength were not significant. 

Conclusion: Increasing the sintering temperature from 1440°C to 1530°C did not 
increase the flexural strength of EZI or WPS zirconia.  
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INTRODUCTION 
Advances in dental science have led to an 
increase in use of ceramics with optimal 
esthetics, biological properties, and 
biomechanics [1,2]. The novel ceramics have 
more favorable esthetics, biocompatibility, wear 
resistance, and chemical stability [3,4]. Despite 
the great advances in composition of ceramics, 

some ceramic types still have poor mechanical 
properties and high brittleness, which limit their 
application in posterior areas [5]. Nonetheless, 
introduction of monolithic zirconia ceramics 
eliminated the existing problems related to 
ceramic strength to some extent, and enabled 
their application in high stress-bearing areas [6]. 
Zirconia ceramics are increasingly used in 
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different parts of dentition due to their optimal 
biomechanics and favorable esthetics [7]. Use of 
zirconia as a core improves the mechanical 
properties of all-ceramic restorations [8,9]. 
Moreover, advent of computer-aided design/ 
computer-aided manufacturing technology 
significantly increased the use of zirconia as the 
first option for fixed prosthetic restorations [10]. 
Monolithic zirconia restorations are highly 
popular due to their high flexural strength 
(+1000MPa), which exceeds the maximum 
occlusal loading during normal mastication. 
They have even shown flexural strength over 
2000N [11]. Optimal restoration color, minimal 
wear of the opposing teeth, conservative 
preparation, and high long-term clinical success 
rate are among the favorable properties of these 
restorations [12].  
In the process of fabrication of crowns, bridges, 
frameworks, and other types of zirconia-based 
restorations, they are sintered in a dental 
furnace at high temperatures. Sintering can 
greatly affect the micro-structure and properties 
of zirconia. In the process of sintering, heat is 
transferred from the surface to the core to 
obtain matured sintered zirconia [13]. Sintering 
temperature is an important parameter 
affecting the size of zirconia particles and their 
density, which directly impact on the rate of 
porosities and growth of particles. The sintering 
temperature can also affect the strength and 
resistance of zirconia. In the process of sintering, 
zirconia undergoes significant shrinkage. Thus, 
variations in sintering parameters of zirconia 
can directly affect its properties [14,15].  
Flexural strength is a physical property that 
shows resistance of a material against 
deformation [16]. The available studies on the 
effects of sintering temperature on strength of 
zirconia have reported controversial results 
[17-23]. Thus, this study aimed to assess the 
effect of sintering temperature on flexural 
strength of IPS e.max ZirCAD MO Ivoclar (EZI) 
and CopraSmile White Peaks Symphony 
(WPS) zirconia blocks.  
 

MATERIALS AND METHODS 

This in vitro, experimental study evaluated 30 
EZI (Ivoclar Vivadent, Schaan, Liechtenstein) 
and 30 WPS (White Peaks Dental, Germany) 

zirconia blocks. The sample size was calculated 
to be 10 in each subgroup according to a 
previous study [21], assuming 95% 
confidence interval, 80% study power, mean 
difference of 1, and standard deviation of 0.75. 
The study was approved by the ethics 
committee of Hamadan University of      
Medical Sciences (IR.UMSHA.REC.1398.279, 
IR.UMSHA.REC.1398.333). Zirconia blocks 
measuring 10×10mm with 1mm thickness 
were milled out of semi-sintered zirconia 
blocks. Considering 20% shrinkage, the 
specimens were first milled in 12×12mm 
dimensions by a milling machine (NEMO Co, 
Mashhad, Iran) and after shrinkage, reached 
10 x 10 mm dimensions. After staining with A3 
shade, EZI specimens were first dried at 170° 
for 30 min, and were then sintered in three 
subgroups at 1440°C, 1500°C and 1530°C 
temperatures [10,11] in a furnace (Ceramill 
Therm; Amann Girrbach, Germany) for 2 h, as 
recommended by the manufacturer. WPS 
specimens were first dried in a furnace 
(Ceramill Therm, Amann Girrbach, Germany) 
at 1400°C for 30 min, and were then sintered 
in three subgroups at 1440, 1500 and 1530°C 
temperature as recommended by the 
manufacturer [24]. After sintering, the 
zirconia specimens underwent flexural 
strength test in a testing machine (SFA-50; 
Santam, Iran) using piston-on-3-ball method 
at room temperature according to ISO2015 
standard. For this purpose, the specimens 
were placed on 3 steel balls with 2.3mm 
diameter. Next, a piston with 1.4mm diameter 
applied load to the center of specimens at a 
speed of 0.5mm/min until fracture [25]. The 
two inferior metal balls had 1 cm distance, and 
the upper middle ball had 5 cm distance from 
each side. The load at fracture was recorded in 
megapascals (Mpa) and biaxial flexural 
strength was calculated using the following 
formulae: 

(1) 𝑆 = − 
0.2387𝑃 (𝑋−𝑌)

𝑑2
  ;     

 

(2) 𝑋 = (1 + 𝜈) ln(
𝑟2

𝑟3
)2 + (

[1−𝜈]

2
)(

𝑟2

𝑟3
)2; and     

 

(3) 𝑌 = (1 + 𝜈) (1 + ln (
𝑟1

𝑟3
)2) + (1 − 𝜈)(
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Where S is the biaxial flexural strength, P is 
the load at fracture, d is the disc thickness at 
the fracture site, v is the Poisson’s ratio, r1 is 
the radius of the supporting circle, r2 is the 
radius of the loaded area, and r3 is the radius 
of the specimen [25]. Also, the specimens 
were inspected under an electron microscope 
(VEGA XMU; Tescan, Czech Republic). For this 
purpose, they were first glued on a glass side 
with aluminum adhesive and coded. Next, 
they were coated with 200Å silver and 
connected to the stage of the device with 
aluminum foil to ensure adequate 
conductivity [26]. They were then inspected 
under the electron microscope.  
Data were analyzed using SPSS version 21. 
Normal distribution of data was confirmed by 
the Kolmogorov-Smirnov test. Thus, 
comparisons were made using one-way 
analysis of variance and the level of 
significance was set at 0.05.  
 
RESULTS 
Table 1 presents the measures of central dispersion 
for the flexural strength of EZI and WPS zirconia 
groups. For the EZI group, the minimum flexural 
strength was noted at 1500°C and the maximum 
flexural strength was noted at 1440°C subgroups. 
 
Table 1. Measures of central dispersion for the 
flexural strength of zirconia groups 

Zirconia Temperature (°C) Mean SD 

White Peaks 
Symphony 

1440 1.44 0.61 

1500 1.18 0.35 

1530 1.33 0.54 

IPS e.max 
ZirCAD MO 
Ivoclar 

1440 1.31 0.49 

1500 1.09 0.24 

1530 1.29 0.48 

SD: standard deviation 

 

For the WPS group, the minimum flexural 
strength was noted in 1500°C and the 
maximum flexural strength was noted in 
1440°C subgroups. Two-way ANOVA 
revealed that the effects of zirconia type 
(P=0.484), temperature (P=0.258) and their 
interaction (P=0.957) on flexural strength 
were not significant. Figure 1 illustrates the 
electron microscopic micrographs of the 

surface of EZI specimens sintered at three 
different temperatures. As shown, the smallest 
particles were seen in specimens sintered at 
1440°C. The particle size increased as the 
sintering temperature increased, and the 
largest particles were seen in 1530°C 
subgroup. Figure 2 illustrates the electron 
microscopic micrographs of the surface of 
WPS specimens sintered at three different 
temperatures. As shown, the smallest particles 
were seen in specimens sintered at 1440°C. 
The particle size increased as the sintering 
temperature increased, and the largest 
particles were seen in 1530°C subgroup. 

 
DISCUSSION 
This study assessed the effect of sintering 
temperature on flexural strength of EZI and 
WPS zirconia blocks. Two-way ANOVA 
revealed that the effects of zirconia type 
(P=0.484), temperature (P=0.258), and their 
interaction (P=0.957) on flexural strength 
were not significant. Thus, it appears that 
increasing the sintering temperature from 
1440°C to 1530°C has no significant effect on 
flexural strength of EZI and WPS zirconia. 
However, scanning electron microscope 
images of both zirconia brands showed that 
the size of zirconia particles increased and 
their orientation became more regular as the 
sintering temperature increased from 1440°C 
to 1530°C. The results of previous studies on 
this topic have been controversial. Amat et al. 
[25] sintered zirconia discs at 1400°C, 1450°C, 
1500°C, 1550°C, and 1600°C for 120 min and 
measured their flexural strength. They found 
that increasing the sintering temperature 
increased the flexural strength of zirconia. The 
maximum flexural strength was noted in 
specimens sintered at 1500°C. 
Ersoy et al. [27] evaluated 120 In-Coris ZI 
zirconia specimens sintered in three groups: 
at 1510°C for 120 min, 1540°C for 25 min, and 
1580°C for 10 min. They measured the flexural 
strength of specimens, and reported 
maximum flexural strength in specimens 
sintered at 1580°C for 10 min. Also, the 
flexural strength of specimens sintered at 
1540°C was significantly higher than that of 
specimens sintered at 1510°C.  



 

Sintering Temperature & Zirconia Flexural Strength 
 

Volume 19 | Article 31| Sep 2022                                                                                                                                        4 / 7 

Fig. 1. Electron microscopic micrographs of the surface of EZI specimens sintered at three different 
temperatures at x10,000 magnification: (A) surface of specimen sintered at 1400°C; (B) surface of specimen 
sintered at 1500°C; (C) surface of specimen sintered at 1530°C 

Fig. 2. Electron microscopic micrographs of the surface of WPS specimens sintered at three different 
temperatures at ×15,000 magnification: (A) surface of specimen sintered at 1400°C; (B) surface of specimen 
sintered at 1500°C; (C) surface of specimen sintered at 1530°C 

 
The results of the abovementioned two 
studies were different from our findings, 
which may be attributed to the use of different 
zirconia brands and sintering protocols 
including temperatures and durations. 
Moreover, the abovementioned two studies 
measured the flexural strength according to 
ISO2008 standard while we applied the 
ISO2015 standard for this purpose. 
Furthermore, duration of sintering was 
different in the three subgroups in the study 
by Ersoy et al, [27] while duration of sintering 
was the same in the three subgroups of each 
zirconia group in our study.  

 
In contrast to our study, Juntavee and Attashu 
[28] indicated the positive effect of increasing 
the sintering temperature and duration on 
flexural strength of zirconia.  
They sintered the specimens at 1350°C, 
1450°C, and 1550°C temperatures for 
different time periods and measured the 
flexural strength with piston-on-3-ball 
method according to ISO2015 standard. 
Difference between their findings and ours 
may be attributed to different sintering 
protocols and thickness of specimens. The 
thickness of specimens was 1 mm in our study 
and duration of sintering was the same in all 
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three subgroups; while, they evaluated 
specimens with 1.5 mm thickness and sintered 
the specimens for different time periods. 
Evidence shows that use of specimens with 4 
mm thickness for measurement of flexural 
strength may mask the possible effects of 
phase transformation on flexural strength of 
zirconia. Thus, the recommended thickness 
for specimens is 1±0.2 mm [29]. Unlike our 
study, Stawarczyk et al. [22] showed the 
negative effect of increasing the sintering 
temperature on flexural strength of zirconia. 
They evaluated 1300°C, 1350°C, 1400°C, 
1450°C, 1500°C, 1550°C, 1600°C, 1650°C and 
1700°C sintering temperatures and measured 
the flexural strength using the piston-on-3-
ball method according to ISO2008 standard. 
They reported the maximum flexural strength 
in specimens sintered at temperatures 
between 1400°C and 1500°C. They found a 
significant inverse correlation between the 
flexural strength and sintering temperature 
such that the flexural strength of zirconia 
decreased in sintering temperatures higher 
than 1500°C. Disagreement between their 
results and ours may be due to the use of 
different zirconia brands and ISO standards. 
Our results were in agreement with those of 
Sen et al, [21] who evaluated the flexural 
strength of Vita YZ HT zirconia specimens with 
1 mm thickness sintered at 1350°C, 1450°C 
and 1600°C temperatures using the same 
technique as ours. They found no significant 
difference in flexural strength of the three 
groups, and reported that increasing the 
sintering temperature had no significant effect 
on flexural strength.  
Electron microscopic micrographs of 
specimens in the present study revealed that 
increasing the sintering temperature 
increased the size of zirconia particles, despite 
causing no significant change in flexural 
strength.  
The relationship of zirconia particle size and 
mechanical properties has been previously 
investigated, and size of particles is believed to 
play a fundamental role in toughness, 
strength, and resistance of zirconia [30].  
In line with our findings, Tekeli and Erdogan 
[31] showed that sintering conditions affected 

the density and mechanical properties of 
zirconia. In contrast, some others failed to 
show the significant effect of sintering 
conditions on particle size. For instance, Kim 
et al. [26] indicated that zirconia specimens 
sintered under different conditions had 
similar density with no significant difference. 
Hjerppe et al. [32] demonstrated that sintering 
conditions had insignificant effect on the size 
of zirconia particles and no effect on 
mechanical properties. Cottom and Mayo [33] 
showed that faster sintering resulted in 
smaller particle size. Although it has been 
reported that larger particles confer higher 
flexural strength [31], the current results 
revealed no significant difference; thus, some 
factors other than particle size may affect the 
flexural strength. One limitation of this study 
was that specimens evaluated in this study 
were flat and had no surface irregularities; 
whereas, tooth crowns have a complex 
curved morphology. Use of specimens with 
tooth morphology can increase the accuracy 
of the obtained results. Also, this study only 
assessed two zirconia brands available in the 
market. Future studies are required to 
compare the flexural strength of different 
zirconia brands. Moreover, the flexural 
strength of monolithic zirconia should be 
compared with metal-ceramic and other 
types of all-ceramic restorations. Last but not 
least, future studies should better simulate 
the clinical setting to obtain more 
generalizable results.  
 
CONCLUSION 

Increasing the sintering temperature from 
1440°C to 1530°C did not increase the flexural 
strength of EZI or WPS zirconia although the 
particle size increased. 
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