Effect of Different Forms of Fluoride Application on Surface Roughness of Rhodium-Coated NiTi Orthodontic Wires: A Clinical Trial
Fluoride Application Effect on NiTi Wires
Abstract
Objectives: This study aimed to assess the effect of different forms of fluoride application on surface roughness of rhodium-coated nickel-titanium (NiTi) orthodontic wires.
Materials and Methods: This randomized clinical trial was conducted on 15 patients randomly divided into three groups: toothbrush with Oral-B toothpaste only, Oral-B toothpaste, and daily mouthwash, Oral-B toothpaste, and sodium fluoride gel. The surface roughness indices of orthodontic wires including arithmetic mean height (Sa), root mean square height, root mean square gradient, developed interfacial area ratio (Sdr) and maximum surface height were measured by atomic force microscopy at baseline and after 6 weeks of application in the patients’ mouths. Data were analyzed by paired t-test, ANOVA, Games-Howell, and Tukey-HSD tests (P<0.05).
Results: All surface roughness parameters in all three groups showed a significant increase after intervention, except for Sa in the toothpaste-only group (P=0.057) and Sdr in the sodium fluoride gel group (P=0.064).
Conclusion: The surface roughness of rhodium-coated NiTi orthodontic wires increases following the use of different forms of fluoride.
2. Kusy RP. A review of contemporary archwires: their properties and characteristics. Angle Orthod. 1997;67(3):197-207.
3. Wang Y, Guo C, Zhou C, Fan M, Wang W, Lin J, et al. Influential factors of esthetic evaluation of mandibular prominence in orthodontic patients. Chin J Med Aesthet Cosmetol. 2018:46-9.
4. Kaur S, Singh R, Soni S, Garg V, Kaur M. Esthetic orthodontic appliances-A review. Ann Geriatr Educ Med Sci. 2018 Jan;5(1):11-4.
5. Nalbantgil D, Ulkur F, Kardas G, Culha M. Evaluation of corrosion resistance and surface characteristics of orthodontic wires immersed in different mouthwashes. Biomed Mater Eng. 2016 Nov 25;27(5):539-549.
6. Mikulewicz M, Wołowiec P, Loster BW, Chojnacka K. Do soft drinks affect metal ions release from orthodontic appliances? J Trace Elem Med Biol. 2015;31:74-7.
7. Sugisawa H, Kitaura H, Ueda K, Kimura K, Ishida M, Ochi Y, et al. Corrosion resistance and mechanical properties of titanium nitride plating on orthodontic wires. Dent Mater J. 2018 Mar 30;37(2):286-292.
8. Kusy RP, Whitley JQ, Mayhew MJ, Buckthal JE. Surface roughness of orthodontic archwires via laser spectroscopy. Angle Orthod. 1988 Jan;58(1):33-45.
9. El-Bialy T, Alobeid A, Dirk C, Jäger A, Keilig L, Bourauel C. Comparison of force loss due to friction of different wire sizes and materials in conventional and new self-ligating orthodontic brackets during simulated canine retraction. J Orofac Orthop. 2019 Mar;80(2):68-78. English.
10. Dufrêne YF, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, et al. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat Nanotechnol. 2017 Apr 6;12(4):295-307.
11. D'Antò V, Rongo R, Ametrano G, Spagnuolo G, Manzo P, Martina R, et al. Evaluation of surface roughness of orthodontic wires by means of atomic force microscopy. Angle Orthod. 2012 Sep;82(5):922-8.
12. Ren Y, Jongsma MA, Mei L, van der Mei HC, Busscher HJ. Orthodontic treatment with fixed appliances and biofilm formation--a potential public health threat? Clin Oral Investig. 2014 Sep;18(7):1711-8.
13. Khoury ES, Abboud M, Bassil-Nassif N, Bouserhal J. Effect of a two-year fluoride decay protection protocol on titanium brackets. Int Orthod. 2011 Dec;9(4):432-51.
14. Alavi S, Farahi A. Effect of fluoride on friction between bracket and wire. Dent Res J (Isfahan). 2011 Dec;8(Suppl 1):S37-42.
15. Bagatin CR, Ito IY, Andrucioli MC, Nelson-Filho P, Ferreira JT. Corrosion in Haas expanders with and without use of an antimicrobial agent: an in situ study. J Appl Oral Sci. 2011 Nov-Dec;19(6):662-7.
16. Walker MP, Ries D, Kula K, Ellis M, Fricke B. Mechanical properties and surface characterization of beta titanium and stainless steel orthodontic wire following topical fluoride treatment. Angle Orthod. 2007 Mar;77(2):342-8.
17. Katić V, Mandić V, Ježek D, Baršić G, Špalj S. Influence of various fluoride agents on working properties and surface characteristics of uncoated, rhodium coated and nitrified nickel-titanium orthodontic wires. Acta Odontol Scand. 2015 May;73(4):241-9.
18. da Silva DL, Mattos CT, Simão RA, de Oliveira Ruellas AC. Coating stability and surface characteristics of esthetic orthodontic coated archwires. Angle Orthod. 2013 Nov;83(6):994-1001.
19. Suárez C, Vilar T, Gil J, Sevilla P. In vitro evaluation of surface topographic changes and nickel release of lingual orthodontic archwires. J Mater Sci Mater Med. 2010 Feb;21(2):675-83.
20. D'Antò V, Rongo R, Ametrano G, Spagnuolo G, Manzo P, Martina R, et al. Evaluation of surface roughness of orthodontic wires by means of atomic force microscopy. Angle Orthod. 2012 Sep;82(5):922-8.
21. Verstrynge A, Van Humbeeck J, Willems G. In-vitro evaluation of the material characteristics of stainless steel and beta-titanium orthodontic wires. Am J Orthod Dentofacial Orthop. 2006 Oct;130(4):460-70.
22. Blateyron, F. The areal field parameters. Chapter 2; In Characterisation of Areal Surface Texture; Leach, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2014.
23. Martha K, Ogodescu A, Bica CI, Varlam CM. Corrosion Behaviour and Surface Modification of Intra-orally Engaged Orthodontic Ni-Ti Wires. REV CHIM. 2017 May 1;68(5):1077-80.
24. Abbassy MA. Fluoride influences nickel-titanium orthodontic wires' surface texture and friction resistance. J Orthod Sci. 2016 Oct-Dec;5(4):121-126.
25. Pulikkottil VJ, Chidambaram S, Bejoy PU, Femin PK, Paul P, Rishad M. Corrosion resistance of stainless steel, nickel-titanium, titanium molybdenum alloy, and ion-implanted titanium molybdenum alloy archwires in acidic fluoride-containing artificial saliva: An in vitro study. J Pharm Bioallied Sci. 2016 Oct;8(Suppl 1):S96-S99.
26. Rongo R, Ametrano G, Gloria A, Spagnuolo G, Galeotti A, Paduano S, et al. Effects of intraoral aging on surface properties of coated nickel-titanium archwires. Angle Orthod. 2014 Jul;84(4):665-72.
27. Fais LM, Fernandes-Filho RB, Pereira-da-Silva MA, Vaz LG, Adabo GL. Titanium surface topography after brushing with fluoride and fluoride-free toothpaste simulating 10 years of use. J Dent. 2012 Apr;40(4):265-75.
28. Katic V, Curkovic L, Bosnjak MU, Peros K, Mandic D, Spalj S. Effect of pH, fluoride and hydrofluoric acid concentration on ion release from NiTi wires with various coatings. Dent Mater J. 2017 Mar 31;36(2):149-156.
29. Katić V, Curković HO, Semenski D, Baršić G, Marušić K, Spalj S. Influence of surface layer on mechanical and corrosion properties of nickel-titanium orthodontic wires. Angle Orthod. 2014 Nov;84(6):1041-8.
30. Heravi F, Moayed MH, Mokhber N. Effect of fluoride on nickel-titanium and stainless steel orthodontic archwires: an in-vitro study. J Dent (Tehran). 2015 Jan;12(1):49-59.
31. Lee TH, Huang TK, Lin SY, Chen LK, Chou MY, Huang HH. Corrosion resistance of different nickel-titanium archwires in acidic fluoride-containing artificial saliva. Angle Orthod. 2010 May;80(3):547-53.
32. Loveland K. Coated and Uncoated Nickel-Titanium Archwires: Mechanical Property and Surface Topography Response to a Simulated Oral Environment with and without Bracket-Related Load-Deflection Induced Stress [Master's Thesis]. University of Missouri-Kansas City; 2017.
33. Mane PP, Pawar R, Ganiger C, Phaphe S. Effect of fluoride prophylactic agents on the surface topography of NiTi and CuNiTi wires. J Contemp Dent Pract. 2012 May 1;13(3):285-8.
34. Huang HH. Variation in surface topography of different NiTi orthodontic archwires in various commercial fluoride-containing environments. Dent Mater. 2007 Jan;23(1):24-33.
Issue | Vol 20 (Continuously Published Article-Based) | |
Section | Original Article | |
DOI | https://doi.org/10.18502/fid.v20i13.12660 | |
Keywords | ||
Microscopy Atomic Force Orthodontic Wires Fluorides |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |