Marginal Adaptation of Implant Prostheses Fabricated by Different Materials in Excessive Crown Height Space Before and After Veneering
Abstract
Objectives: This study aimed to investigate the marginal adaptation of implant-supported three-unit fixed restorations fabricated in excessive crown height by various frameworks namely zirconia, nickel-chromium (Ni-Cr) alloy, and Polyetheretherketone (PEEK) before and after veneering.
Materials and Methods: A basic model with two implant fixtures was made to receive posterior three-unit fixed partial dentures (second premolar to second molar) in 15 mm crown height. A total of 30 frameworks were fabricated using Ni-Cr, zirconia, and PEEK (n=10). All specimens were veneered and vertical marginal discrepancy was evaluated before and after veneering using a stereomicroscope (×75). The effect of framework material and veneering on marginal discrepancy was evaluated by repeated-measures and one-way ANOVA, and paired t test (α=0.05).
Results: There was a significant difference between the groups (P<0.001) before and after veneering. The vertical marginal discrepancy of zirconia frameworks was significantly lower than that of other groups both before and after veneering (P<0.001). Statistical analysis revealed that the veneering process had a significant effect on marginal adaptation (P<0.001).
Conclusion: In implant prostheses with excessive crown height, zirconia had the greatest marginal adaptaion significantly, followed by Ni-Cr. Veneering caused a significant increase in marginal discrepancy of all the materials.
2. Nakaoka MM, Takahashi JMF, Nuñez-Pantoja JMC, Consani R, Mesquita M. Porcelain application and simulation of firing cycle: Effect on marginal misfit of implantsupported frameworks. Braz J Oral Sci. 2010;9:376-9.
3. Misch CE. Dental Implant Prosthetics: Elsevier Mosby; 2014. 206-30 p.
4. Sevimay M, Usumez A, Eskitascioglu G. The influence of various occlusal materials on stresses transferred to implant-supported prostheses and supporting bone: a three-dimensional finite-element study. J Biomed Mater Res B Appl Biomater. 2005 Apr;73(1):140-7.
5. Bathala L, Majeti V, Rachuri N, Singh N, Gedela S. The role of polyether ether ketone (Peek) in dentistry - A review. J Med Life 2019 Jan;12:5-9.
6. Najeeb S, Zafar MS, Khurshid Z, Siddiqui F. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res. 2016 Jan;60(1):12-9.
7. Hallmann L, Mehl A, Sereno N, Hämmerle CHF. The improvement of adhesive properties of PEEK through different pre-treatments. Appl Surf Sci. 2012 Jul;258(18):7213-8.
8. Schwitalla AD, Spintig T, Kallage I, Muller WD. Flexural behavior of PEEK materials for dental application. Dent Mater. 2015 Nov;31(11):1377-84.
9. Vojdani M, Torabi K, Farjood E, Khaledi A. Comparison the Marginal and Internal Fit of Metal Copings Cast from Wax Patterns Fabricated by CAD/CAM and Conventional Wax up Techniques. J Dent (Shiraz). 2013 Sep;14(3):118-29.
10. Kan JY, Rungcharassaeng K, Bohsali K, Goodacre CJ, Lang BR. Clinical methods for evaluating implant framework fit. J Prosthet Dent. 1999 Jan;81(1):7-13.
11. Siadat H, Mirfazaelian A, Alikhasi M. Scanning electron microscope evaluation of marginal discrepancy of gold and base metal implant-supported prostheses with three fabrication methods. J Indian Prosthodont Soc. 2008 Jul;8(3):148-53.
12. Att W, Komine F, Gerds T, Strub JR. Marginal adaptation of three different zirconium dioxide three-unit fixed dental prostheses. J Prosthet Dent. 2009 Apr;101(4):239-47.
13. Kohorst P, Brinkmann H, Li J, Borchers L, Stiesch M. Marginal accuracy of four-unit zirconia fixed dental prostheses fabricated using different computer-aided design/computer-aided manufacturing systems. Eur J Oral Sci. 2009 Jun;117(3):319-25.
14. Chandrashekar S, Savadi RC, Dayalan M, Reddy GTP. A comparitive evaluation of the marginal adaptation of zirconium coping and nickel-chromium coping using shoulder finish line design: an invitro study. J Indian Prosthodont Soc. 2012 Dec;12(4):248-51.
15. Kim KB, Kim WC, Kim HY, Kim JH. An evaluation of marginal fit of three-unit fixed dental prostheses fabricated by direct metal laser sintering system. Dent Mater. 2013 Jul;29(7):e91-6.
16. Zaghloul HH, Younis JF. Marginal fit of implant-supported all-ceramic zirconia frameworks. J Oral Implantol. 2013 Aug;39(4):417-24.
17. Pompa G, Di Carlo S, De Angelis F, Cristalli MP, Annibali S. Comparison of conventional methods and laser-assisted rapid prototyping for manufacturing fixed dental prostheses: An in vitro study. Biomed Res Int. 2015;2015 Oct:318097.
18. Bridger DV, Nicholls JI. Distortion of ceramometal fixed partial dentures during the firing cycle. J Prosthet Dent. 1981 May;45(5):507-14.
19. Buchanan WT, Svare CW, Turner KA. The effect of repeated firings and strength on marginal distortion in two ceramometal systems. J Prosthet Dent. 1981 May;45(5):502-6.
20. Dittmer MP, Borchers L, Stiesch M, Kohorst P. Stresses and distortions within zirconia-fixed dental prostheses due to the veneering process. Acta Biomater. 2009 Oct;5(8):3231-9.
21. Felton DA, Sulik WD, Holland GA, Taylor DF, Bayne SC. Marginal discrepancy changes at various stages of construction of three-unit porcelain-fused-to-metal fixed partial dentures. Dent Mater. 1988 Oct;4(5):296-301.
22. Lang BR, Gemalmaz D, Alkumru HN. Marginal fit changes during porcelain firing cycles. J Prosthet Dent. 1995 Jan;73(1):49-54.
23. Kohorst P, Brinkmann H, Dittmer MP, Borchers L, Stiesch M. Influence of the veneering process on the marginal fit of zirconia fixed dental prostheses. J Oral Rehabil. 2010 Apr;37(4):283-91.
24. Pak H-S, Han J-S, Lee J-B, Kim S-H, Yang J-H. Influence of porcelain veneering on the marginal fit of Digident and Lava CAD/CAM zirconia ceramic crowns. J Adv Prosthodont. 2010 Jun;2(2):33-8.
25. Regish KM, Sharma D, Prithviraj DR, Nair A, Raghavan R. Evaluation and comparison of the internal fit and marginal accuracy of base metal (nickelchromium) and zirconia copings before and after ceramic veneering: a sem study. Eur J Prosthodont Restor Dent. 2013 Mar;21(1):44-8.
26. Vigolo P, Fonzi F. An in vitro evaluation of fit of zirconium-oxide-based ceramic four-unit fixed partial dentures, generated with three different CAD/CAM systems, before and after porcelain firing cycles and after glaze cycles. J Prosthodont. 2008 Dec;17(8):621-6.
27. Baskaran BE, Geetha Prabhu KR, Prabhu R, Krishna GP, Eswaran MA, Gajapathi B. Casting made simple using modified sprue design: an in vitro study. Indian J Dent Res. 2014 May;25(3):340-5.
28. Jemt T, Hjalmarsson L. In vitro measurements of precision of fit of implant-supported frameworks. A comparison between "virtual" and "physical" assessments of fit using two different techniques of measurements. Clin Implant Dent Relat Res. 2012 May;14 Suppl 1:e175-82.
29. Nawafleh NA, Mack F, Evans J, Mackay J, Hatamleh MM. Accuracy and reliability of methods to measure marginal adaptation of crowns and FDPs: a literature review. J Prosthodont. 2013 Jul;22(5):419-28.
30. Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent. 1989 Oct;62(4):405-8.
31. Abduo J. Fit of CAD/CAM implant frameworks: a comprehensive review. J Oral Implantol. 2014 Dec;40(6):758-66.
32. Castillo-Oyague R, Lynch CD, Turrion AS, Lopez-Lozano JF, Torres-Lagares D, Suarez-Garcia MJ. Misfit and microleakage of implant-supported crown copings obtained by laser sintering and casting techniques, luted with glass-ionomer, resin cements and acrylic/urethane-based agents. J Dent. 2013 Jan;41(1):90-6.
33. de Franca DG, Morais MH, das Neves FD, Barbosa GA. Influence of CAD/CAM on the fit accuracy of implant-supported zirconia and cobalt-chromium fixed dental prostheses. J Prosthet Dent. 2015 Jan;113(1):22-8.
34. Zeighami S, Ghodsi S, Sahebi M, Yazarloo S. Comparison of marginal adaptation of different implant-supported metal-free frameworks before and after cementation. Int J Prosthodont. 2019 Jul;32(4):361-3.
35. Bae SY, Park JY, Jeong ID, Kim HY, Kim JH, Kim WC. Three-dimensional analysis of marginal and internal fit of copings fabricated with polyetherketoneketone (PEKK) and zirconia. J Prosthodont Res. 2017;61(2):106-12.
36. Jin HY, Teng MH, Wang ZJ, Li X, Liang JY, Wang WX, et al. Comparative evaluation of BioHPP and titanium as a framework veneered with composite resin for implant-supported fixed dental prostheses. J Prosthet Dent. 2019 Oct;122(4):383-8.
37. McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br Dent J. 1971;131(3):107-11.
38. Jemt T. Failures and complications in 391 consecutively inserted fixed prostheses supported by Branemark implants in edentulous jaws: a study of treatment from the time of prosthesis placement to the first annual checkup. Int J Oral Maxillofac Implants. 1991 Sep;6(3):270-6.
39. Lalande D, Hodd JA, Brousseau JS, Ramos V, Dunham D, Rueggeberg F. Marginal discrepancy dimensions of single unit metal crowns fabricated by using CAD-CAM-milled acrylate resin polymer blocks or a conventional waxing technique. J Prosthet Dent. 2018 Jun;119(6):948-53.
40. Gonzalo E, Suarez MJ, Serrano B, Lozano JF. A comparison of the marginal vertical discrepancies of zirconium and metal ceramic posterior fixed dental prostheses before and after cementation. J Prosthet Dent. 2009 Dec;102(6):378-84.
Issue | Vol 18 (Continuously Published Article-Based) | |
Section | Original Article | |
DOI | https://doi.org/10.18502/fid.v18i28.6938 | |
Keywords | ||
Dental Marginal Adaptation; Dental Veneers; Polyetheretherketone; Zirconium Oxide |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |