Original Article

Effect of Sintering Temperature on Flexural Strength of Two Types of Zirconia


Objectives: Any change in the sintering process can directly affect the micro-structure and properties of zirconia. This study sought to assess the effect of sintering temperature on flexural strength of IPS e.max ZirCAD MO Ivoclar (EZI) and CopraSmile White Peaks Symphony (WPS) zirconia blocks.

Materials and Methods: In this in vitro, experimental study, 30 EZI and 30 WPS zirconia blocks measuring 10 x 10 x 1 mm were milled and sintered at 1440, 1500 and 1530°C in three subgroups. The flexural strength of the specimens was measured by a testing machine with piston-on-3-ball method according to ISO2015. Data were analyzed using one-way ANOVA.

Results: The mean flexural strength was 1.31±0.49, 1.09±0.24 and 1.29±0.48 MPa in 1440, 1500, and 1530°C subgroups of EZI, and 1.44±0.61, 1.18±0.35, and 1.33±0.54 MPa in 1440, 1500, and 1530°C subgroups of WPS zirconia, respectively. Two-way ANOVA revealed that the effects of zirconia type (P=0.484), temperature (P=0.258) and their interaction (P=0.957) on flexural strength were not significant.

Conclusion: Increasing the sintering temperature from 1440°C to 1530°C did not increase the flexural strength of EZI or WPS zirconia. 

1. Giordano RA. Dental ceramic restorative systems. Compend Contin Educ Dent. 1996 Aug;17(8):779-82.
2. Coldea A, Swain MV, Thiel N. Hertzian contact response and damage tolerance of dental ceramics. J Mech Behav Biomed. 2014 Jun;34:124-33.
3. Marocho SM, Studart AR, Bottino MA, Della Bona A. Mechanical strength and subcritical crack growth under wet cyclic loading of glass-infiltrated dental ceramics. Dent Mater. 2010 May;26(5):483- 90.
4. Della Bona A, Mecholsky Jr JJ, Barrett AA, Griggs JA. Characterization of glass-infiltrated alumina-based ceramics. Dent Mater. 2008 Nov;24(11):1568-74.
5. Denry IL. Recent advances in ceramics for dentistry. Critical Reviews in Oral Biology & Medicine. AM Assoc Oral Biol. 1996 Apr;7(2):134-43.
6. Anusavice KJ. Recent developments in restorative dental ceramics. J Am Dent Assoc. 1993 Feb;124(2):72-84.
7. Oliva J, Oliva X, Oliva JD. Five-year success rate of 831 consecutively placed zirconia dental implants in humans: A comparison of three different rough surfaces. Int J Oral Maxillofac Implants. 2010 Apr;25(2):336-44.
8. Thompson JY, Stoner BR, Piascik JR, Smith R. Adhesion/cementation to zirconia and other nonsilicate ceramics: where are we now? Dent Mater. 2011 Jan;27(1):71-82.
9. Elsaka SE. Influence of surface treatments on the surface properties of different zirconia cores and adhesion of zirconia-veneering ceramic systems. Dent Mater. 2013 Oct;29(10):e239-51.
10. Kim JW, Covel NS, Guess PC, Rekow ED, Zhang Y. Concerns of hydrothermal degradation in CAD/CAM zirconia. J Dent Res. 2010 Jan;89(1):91-5.
11. Yilmaz H, Aydin C, Gul BE. Flexural strength and fracture toughness of dental core ceramics. J Prosthet Dent. 2007 Aug;98(2):120-8.
12. Quinn JB, Cheng D, Rusin R, Suttor D. Fractographic analysis and material properties of a ental zirconia. Poster presented at: IADR/AADR/CADR 83rd General Session. 2005 Mar 9.
13. Taruta S, Yamaguchi I, Yamakami T, Yamaguchi T. Sintering behavior and mechanical properties of machinable zirconia/mica composites. J Asian Ceram Soc. 2019 Jul;7(3):342-9.
14. Janney MA, Calhoun CL, Kimrey HD. Microwave sintering of solid oxide fuel cell materials: I, zirconia‐8 mol% yttria. J Am Ceram Soc. 1992 Feb;75(2):341-6.
15. Zhang HB, Kim BN, Morita K, Yoshida H, Lim JH, Hiraga K. Optimization of high-pressure sintering of transparent zirconia with nano-sized grains. J Alloys Compd. 2010 Oct;508(1):196-9.
16. International Organization for Standardization. ISO 6872-2015. Dentistry: ceramic materials (4th Ed.). International Organization for Standardization.
17. Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dent Mater. 2004 Jun;20(5):449-56.
18. Teixeira EC, Piascik JR, Stoner BR, Thompson JY. Dynamic fatigue and strength characterization of three ceramic materials. J Mater Sci Mater Med. 2007 Jun;18(6):1219-24.
19. Denry I, Kelly JR. Emerging ceramic-based materials for dentistry. J Dent Res. 2014 Dec;93(12):1235-42.
20. Khaledi AA, Vojdani M, Farzin M, Pirouzi S. The effect of sintering program on the compressive strength of zirconia copings. J Dent (Shiraz). 2018 Sep;19(3):206-11.
21. Sen N, Sermet IB, Cinar S. Effect of coloring and sintering on the translucency and biaxial strength of monolithic zirconia. J Prosthet Dent. 2018 Feb;119(2):308.e1-7.
22. Stawarczyk B, Özcan M, Hallmann L, Ender A, Mehl A, Hämmerlet CH. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Invest. 2013 Jan;17(1):269-74.
23. Hu L, Wang CA. Effect of sintering temperature on compressive strength of porous yttria-stabilized zirconia ceramics. Ceramics International. 2010 Jul;36(5):1697-701.
24. https://www.amanngirrbach.com
25. Amat NF, Muchtar A, Amril MS, Ghazali MJ,Yahaya N. Effect of sintering temperature on the aging resistance and mechanical properties of monolithic zirconia. J Mater Res Tech. 2019 Jan;8(1):1092-101.
26. Kim MJ, Ahn JS, Kim JH, Kim HY, Kim WC. Effects of the sintering conditions of dental zirconia
ceramics on the grain size and translucency.J Adv Prosthodont. 2013 May;5(2):161-6.
27. Ersoy NM, Aydoğdu HM, Değirmenci BÜ, Çökük N, Sevimay M. The effects of sintering temperature and duration on the flexural strength and grain size of zirconia. Acta Biomater Odontol Scand. 2015 Dec;1(2-4):43-50.
28. Juntavee N, Attashu S. Effect of sintering process on color parameters of nano-sized yttria partially stabilized tetragonal monolithic zirconia. JClin Exp Dent. 2018 Aug;10(8):e794-804.
29. Kelch M, Schulz J, Edelhoff D, Sener B, Stawarczyk B. Impact of different pretreatments and aging procedures on the flexural strength and phase structure of zirconia ceramics. Dent Mater. 2019 Oct;35(10):1439-49.
30. Chen R, Wang CA, Huang Y, Ma L, Lin W. Ceramics with special porous structures fabricated by freeze‐gelcasting: using tert‐butyl alcohol as a template. J Am Ceram Soc. 2007 Nov;90(11):3478-84.
31. Tekeli S, Erdogan M. A quantitative assessment of cavities in 3 mol% yttria-stabilized tetragonal zirconia specimens containing various grain size. Ceram Int. 2002 Jan;28(7):785-9.
32. Hjerppe J, Vallittu PK, Fröberg K, Lassila LV. Effect of sintering time on biaxial strength of zirconium dioxide. Dent Mater. 2009 Feb;25(2):166-71.
33. Cottom BA, Mayo MJ. Fracture toughness of nanocrystalline ZrO 2-3mol% Y 2 O 3 determined by Vickers indentation. Scripta Materialia. 1996;34(5):809-14.
IssueVol 19 (Continuously Published Article-Based) QRcode
SectionOriginal Article
DOI https://doi.org/10.18502/fid.v19i31.10803
Zirconium Oxide Flexural Strength IPS e.max Press

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Shahbazi A, Vafaei F, Hooshyarfard A, Nosrati E, Nazari M, Farhadian M. Effect of Sintering Temperature on Flexural Strength of Two Types of Zirconia. Front Dent. 2022;19.