Original Article

In Vitro Comparison of Flexural Strength of a Bioactive Composite and a Reinforced Hybrid Glass Ionomer

Abstract

Objectives: The present study was conducted to compare the flexural strength of a bioactive composite and a reinforced hybrid glass ionomer (GI).

Materials and Methods: In this in vitro experimental study, 10 rectangular-shaped specimens were fabricated from Activa Bioactive composite (N=5) and EQUIA Forte Coat GI (N=5) using stainless steel molds with internal dimensions of 2×2×25mm according to the manufacturers’ instructions. The flexural strength of the specimens was measured with a universal testing machine with the three-point bending test using a load of 50±16N/min at a crosshead speed of 0.75±0.25mm/min. The data were analyzed using the Mann-Whitney U          test (α=0.05).

Results: The mean flexural strength was 57.91MPa for the bioactive composite and 19.20MPa for the reinforced hybrid GI. The mean flexural strength of the bioactive composite was significantly higher than that of hybrid GI (P=0.008).

Conclusion: Within the limitations of this in vitro study, the results indicate that the Activa Bioactive composite exhibits greater flexural strength compared to EQUIA Forte Coat GI.

1. Alrahlah A. Diametral Tensile Strength, Flexural Strength, and Surface Microhardness of Bioactive Bulk Fill Restorative. J Contemp Dent Pract. 2018 Jan 1;19(1):13-19.
2. Shamszadeh S, Akhavan Zanjani V, Mofidi M, Abdo Tabrizi M, Yazdani S. Comparison of flexural strength of some composite types common in Iran. J Dent Sch 2013; 31(2):97-103.
3. Kielbassa AM, Oehme EP, Shakavets N, Wolgin M. In vitro wear of (resin-coated) high-viscosity glass ionomer cements and glass hybrid restorative systems. J Dent. 2021 Feb;105:103554.
4. Vural UK, Gurgan S. Repair potential of a new glass hybrid restorative system. Niger J Clin Pract. 2019 Jun;22(6):763-770.
5. Gurgan S, Kutuk ZB, Ergin E, Oztas SS, Cakir FY. Four-year randomized clinical trial to evaluate the clinical performance of a glass ionomer restorative system. Oper Dent. 2015 Mar-Apr;40(2):134-43.
6. Gurgan S, Kutuk ZB, Ozturk C, Soleimani R, Cakir FY. Clinical Performance of a Glass Hybrid Restorative in Extended Size Class II Cavities. Oper Dent. 2020 May/Jun;45(3):243-254.
7. Slowikowski L, John S, Finkleman M, Perry R, Harsono M, Kugel G. Fluoride ion release and recharge over time in three restoratives. J Dent Res. 2014;93:268.
8. Kutuk ZB, Ozturk C, Cakir FY, Gurgan S. Mechanical performance of a newly developed glass hybrid restorative in the restoration of large MO Class 2 cavities. Niger J Clin Pract. 2019 Jun;22(6):833-841.
9. Gundogdu M, Kurklu D, Yanikoglu N, Kul E. The evaluation of flexural strength of composite resin materials with and without fiber. Dentistry. 2014. Jan 1;4(9):1.
10. Mirsayar MM. On fracture analysis of dental restorative materials under combined tensile-shear loading. Theor. Appl. Fract. Mech. 2018 Feb 1;93:170-6.
11. Belli R, Wendler M, Zorzin JI, Lohbauer U. Practical and theoretical considerations on the fracture toughness testing of dental restorative materials. Dent Mater. 2018 Jan;34(1):97-119.
12. Pameijer CH, Garcia-Godoy F, Morrow BR, Jefferies SR. Flexural strength and flexural fatigue properties of resin-modified glass ionomers. J Clin Dent. 2015;26(1):23-7.
13. Girn V, Chao W, Harsono M, Perry RD, Kugel G. Comparison of mechanical properties of dental restorative material. J Dent Res. 2014;93(Spec Issue A):1163.
14. Chao W, Girn V, Harsono M. Deflection at break of restorative materials. J Dent Res. 2015;94:2375.
15. Kattan H, Chatzistavrou X, Boynton J, Dennison J, Yaman P, Papagerakis P. Physical Properties of an Ag-Doped Bioactive Flowable Composite Resin. Materials (Basel). 2015 Jul 24;8(8):4668-4678.
16. Oral O, Lassila LV, Kumbuloglu O, Vallittu PK. Bioactive glass particulate filler composite: Effect of coupling of fillers and filler loading on some physical properties. Dent Mater. 2014 May;30(5):570-7.
17. Goudouri OM, Kontonasaki E, Theocharidou A, Kantiranis N, Chatzistavrou X, Koidis P, Paraskevopoulos KM. Dental ceramics/bioactive glass composites: characterization and mechanical properties investigation. Bioceramics Develop. Appl.2011 Jan 1;1.
18. Hahnel S, Henrich A, Bürgers R, Handel G, Rosentritt M. Investigation of mechanical properties of modern dental composites after artificial aging for one year.
19. International Organization for Standardization. Dentistry—Polymer-based filling, restorative and luting materials. ISO 4049:2000. Available at: https://cdn.standards.iteh.ai/samples/23041/725d2a3689ce497b91c34c7b933abda1/ISO-4049-2000.pdf
20. Ghavami-Lahiji M, Firouzmanesh M, Bagheri H, Jafarzadeh Kashi TS, Razazpour F, Behroozibakhsh M. The effect of thermocycling on the degree of conversion and mechanical properties of a microhybrid dental resin composite. Restor Dent Endod. 2018 Apr 26;43(2):e26.
21. Thomaidis S, Kakaboura A, Mueller WD, Zinelis S. Mechanical properties of contemporary composite resins and their interrelations. Dent Mater. 2013 Aug;29(8):e132-41.
22. Cattani-Lorente MA, Godin C, Meyer JM. Early strength of glass ionomer cements. Dent Mater. 1993 Jan;9(1):57-62.
23. Faridi MA, Khabeer A, Haroon S. Flexural Strength of Glass Carbomer Cement and Conventional Glass Ionomer Cement Stored in Different Storage Media over Time. Med Princ Pract. 2018;27(4):372-377.
24. Khouw-Liu VH, Anstice HM, Pearson GJ. An in vitro investigation of a poly(vinyl phosphonic acid) based cement with four conventional glass-ionomer cements. Part 1: Flexural strength and fluoride release. J Dent. 1999 Jul;27(5):351-7.
25. Valanezhad A, Odatsu T, Udoh K, Shiraishi T, Sawase T, Watanabe I. Modification of resin modified glass ionomer cement by addition of bioactive glass nanoparticles. J Mater Sci Mater Med. 2016 Jan;27(1):3.
26. Nicolae LC, Shelton RM, Cooper PR, Martin RA, Palin WM. The effect of UDMA/TEGDMA mixtures and bioglass incorporation on the mechanical and physical properties of resin and resin-based composite materials. Conf. Pap. Sci. 2014, 1–5.
27. Korkut E, Torlak E, Altunsoy M. Antimicrobial and mechanical properties of dental resin composite containing bioactive glass. J Appl Biomater Funct Mater. 2016 Jul 26;14(3):e296-301.
28. Khvostenko D, Mitchell JC, Hilton TJ, Ferracane JL, Kruzic JJ. Mechanical performance of novel bioactive glass containing dental restorative composites. Dent Mater. 2013 Nov;29(11):1139-48.
29. Croll TP, Berg JH, Donly KJ. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite. Compend Contin Educ Dent. 2015 Jan;36(1):60-5.
30. Reyes-Carmona JF, Santos AS, Figueiredo CP, Baggio CH, Felippe MC, Felippe WT, Cordeiro MM. Host-mineral trioxide aggregate inflammatory molecular signaling and biomineralization ability. J Endod. 2010 Aug;36(8):1347-53.
31. Söderholm KJ, Zigan M, Ragan M, Fischlschweiger W, Bergman M. Hydrolytic degradation of dental composites. J Dent Res. 1984 Oct;63(10):1248-54.
IssueVol 22 (Continuously Published Article-Based) QRcode
SectionOriginal Article
Keywords
ACTIVA BioACTIVE-RESTORATIVE Flexural Strength Glass Ionomer Cements

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Saati K, Valizadeh S, Ayyari M, Amirifar S. In Vitro Comparison of Flexural Strength of a Bioactive Composite and a Reinforced Hybrid Glass Ionomer. Front Dent. 2025;22.