Original Article

In Vitro Comparison of the Viability and Proliferation of Human Gingival Fibroblasts and Osteoblast-like MG-63 Cells on Three Different Temporary Cements Used in Dental Implants

Abstract

Objectives: Retained cement is an idiopathic factor contributing to early implant loss, making the selection of cement with minimal toxicity to peri-implant hard and soft tissues crucial. This study aimed to evaluate the cytotoxicity of three types of temporary cements and titanium specimens cemented with each, following direct exposure to human gingival fibroblasts (HGF) and MG-63 osteoblast-like cells.

Materials and Methods: In this in vitro study, zinc oxide-eugenol (ZOE), eugenol-free zinc oxide (ZONE), and resin (R) cements were prepared in cylindrical forms of similar dimensions. Each cement was applied to titanium disks to create cemented titanium samples. Cytotoxicity was evaluated using the MTT assay at 24 hours, 72 hours, and 7 days. Cytotoxicity was assessed on HGF and MG-63 osteoblast-like cells using the MTT assay at 24, 72 hours, and 7 days. Data analysis involved two-way and one-way ANOVA, with Tukey's post-hoc tests, and statistical significance was defined as P<0.05.

Results: All cements significantly reduced cell viability in both cell lines. None of the cements demonstrated cellular viability percentages above the minimum threshold (70%) required for biocompatibility. The cytotoxicity of the cemented titanium disks was not significantly different from that of the cement-only samples (P>0.05). Additionally, there were no significant differences in the sensitivity of MG-63 osteoblast-like cells and HGF cells to the evaluated cements.

Conclusion: The composition of the cement played a significant role in the host cell response. This study demonstrated that dental cements could induce tissue toxicity in the gingiva and bones, ultimately affecting implant survival.

1. Chee W, Felton DA, Johnson PF, Sullivan DY. Cemented versus screw-retained implant prostheses: which is better? Int J Oral Maxillofac Implants. 1999 Jan-Feb;14(1):137-41.
2. Hebel KS, Gajjar RC. Cement-retained versus screw-retained implant restorations: achieving optimal occlusion and esthetics in implant dentistry. J Prosthet Dent. 1997 Jan;77(1):28-35.
3. Squier RS, Agar JR, Duncan JP, Taylor TD. Retentiveness of dental cements used with metallic implant components. Int J Oral Maxillofac Implants. 2001 Nov-Dec;16(6):793-8.
4. Hill EE, Lott J. A clinically focused discussion of luting materials. Aust Dent J. 2011 Jun;56 Suppl 1:67-76.
5. Vindasiute E, Puisys A, Maslova N, Linkeviciene L, Peciuliene V, Linkevicius T. Clinical Factors Influencing Removal of the Cement Excess in Implant-Supported Restorations. Clin Implant Dent Relat Res. 2015 Aug;17(4):771-8.
6. Schwarz S, Schröder C, Corcodel N, Hassel AJ, Rammelsberg P. Retrospective comparison of semipermanent and permanent cementation of implant-supported single crowns and FDPs with regard to the incidence of survival and complications. Clin Implant Dent Relat Res. 2012 May;14 Suppl 1:e151-8.
7. Berglundh T, Armitage G, Araujo MG, Avila-Ortiz G, Blanco J, Camargo PM, et al. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol. 2018 Jun;45 Suppl 20:S286-S291.
8. Jepsen S, Berglundh T, Genco R, Aass AM, Demirel K, Derks J, Figuero E, Giovannoli JL, Goldstein M, Lambert F, Ortiz-Vigon A, Polyzois I, Salvi GE, Schwarz F, Serino G, Tomasi C, Zitzmann NU. Primary prevention of peri-implantitis: managing peri-implant mucositis. J Clin Periodontol. 2015 Apr;42 Suppl 16:S152-7.
9. Salvi GE, Zitzmann NU. The effects of anti-infective preventive measures on the occurrence of biologic implant complications and implant loss: a systematic review. Int J Oral Maxillofac Implants. 2014;29 Suppl:292-307.
10. Mombelli A, Müller N, Cionca N. The epidemiology of peri-implantitis. Clin Oral Implants Res. 2012 Oct;23 Suppl 6:67-76.
11. Staubli N, Walter C, Schmidt JC, Weiger R, Zitzmann NU. Excess cement and the risk of peri-implant disease - a systematic review. Clin Oral Implants Res. 2017 Oct;28(10):1278-1290.
12. Agar JR, Cameron SM, Hughbanks JC, Parker MH. Cement removal from restorations luted to titanium abutments with simulated subgingival margins. J Prosthet Dent. 1997 Jul;78(1):43-7.
13. Cochran DL, Hermann JS, Schenk RK, Higginbottom FL, Buser D. Biologic width around titanium implants. A histometric analysis of the implanto-gingival junction around unloaded and loaded nonsubmerged implants in the canine mandible. J Periodontol. 1997 Feb;68(2):186-98.
14. Linkevicius T, Puisys A, Vindasiute E, Linkeviciene L, Apse P. Does residual cement around implant-supported restorations cause peri-implant disease? A retrospective case analysis. Clin Oral Implants Res. 2013 Nov;24(11):1179-84.
15. Mouhyi J, Dohan Ehrenfest DM, Albrektsson T. The peri-implantitis: implant surfaces, microstructure, and physicochemical aspects. Clin Implant Dent Relat Res. 2012 Apr;14(2):170-83.
16. Rodrigues DC, Valderrama P, Wilson TG, Palmer K, Thomas A, Sridhar S, Adapalli A, Burbano M, Wadhwani C. Titanium Corrosion Mechanisms in the Oral Environment: A Retrieval Study. Materials (Basel). 2013 Nov 15;6(11):5258-5274.
17. Demirel F, Saygili G, Sahmali S. Corrosion susceptibility of titanium covered by dental cements. J Oral Rehabil. 2003 Dec;30(12):1162-7.
18. Fernández Lorenzo de Mele M, Cortizo, MC. Electrochemical behaviour of titanium in fluoride-containing saliva. J Appl Electrochem. . 2000 Jan;30:95-100.
19. Nakagawa M, Matsuya S, Shiraishi T, Ohta M. Effect of fluoride concentration and pH on corrosion behavior of titanium for dental use. J Dent Res. 1999 Sep;78(9):1568-72.
20. Turpin YL, Tardivel RD, Tallec A, Le Menn AC. Corrosion susceptibility of titanium covered by dental cements. Dent Mater. 2000 Jan;16(1):57-61.
21. Kinani L, CHTAINI A, Latrache H. The inhibition effect of eugenol to the biocorrosion of titanium in saliva medium. Leonardo Electronic J Practices Tech. 2014 Jan(24):51-9.
22. Marvin JC, Gallegos SI, Parsaei S, Rodrigues DC. In Vitro Evaluation of Cell Compatibility of Dental Cements Used with Titanium Implant Components. J Prosthodont. 2019 Feb;28(2):e705-e712.
23. Chee W, Jivraj S. Screw versus cemented implant supported restorations. Br Dent J. 2006 Oct 21;201(8):501-507.
24. Pauletto N, Lahiffe BJ, Walton JN. Complications associated with excess cement around crowns on osseointegrated implants: a clinical report. Int J Oral Maxillofac Implants. 1999 Nov-Dec;14(6):865-8.
25. Wilson TG Jr. The positive relationship between excess cement and peri-implant disease: a prospective clinical endoscopic study. J Periodontol. 2009 Sep;80(9):1388-92.
26. Taylor TD, Agar JR. Twenty years of progress in implant prosthodontics. J Prosthet Dent. 2002 Jul;88(1):89-95.
27. Vajrabhaya L, Sithisarn P. Multilayer and monolayer cell cultures in a cytotoxicity assay of root canal sealers. Int Endod J. 1997 Mar;30(2):141-4.
28. Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008 Jul 1;29(20):2941-53.
29. Huang FM, Tai KW, Chou MY, Chang YC. Cytotoxicity of resin-, zinc oxide-eugenol-, and calcium hydroxide-based root canal sealers on human periodontal ligament cells and permanent V79 cells. Int Endod J. 2002 Feb;35(2):153-8.
30. Al-Nazhan S, Spangberg L. Morphological cell changes due to chemical toxicity of a dental material: an electron microscopic study on human periodontal ligament fibroblasts and L929 cells. J Endod. 1990 Mar;16(3):129-34.
31. Eldeniz AU, Mustafa K, Ørstavik D, Dahl JE. Cytotoxicity of new resin-, calcium hydroxide- and silicone-based root canal sealers on fibroblasts derived from human gingiva and L929 cell lines. Int Endod J. 2007 May;40(5):329-37.
32. Rodriguez LC, Saba JN, Chung KH, Wadhwani C, Rodrigues DC. In vitro effects of dental cements on hard and soft tissues associated with dental implants. J Prosthet Dent. 2017 Jul;118(1):31-35.
33. Gallegos SI, Parsaei S, Siddiqui DA, Biguetti CC, Palmer KL, Rodrigues DC. Can Dental Cement Composition Affect Dental Implant Success? ACS Biomater Sci Eng. 2019 Oct 14;5(10):5116-5127.
34. Kwon JS, Illeperuma RP, Kim J, Kim KM, Kim KN. Cytotoxicity evaluation of zinc oxide-eugenol and non-eugenol cements using different fibroblast cell lines. Acta Odontol Scand. 2014 Jan;72(1):64-70.
35. Hume WR. An analysis of the release and the diffusion through dentin of eugenol from zinc oxide-eugenol mixtures. J Dent Res. 1984 Jun;63(6):881-4.
36. Kaga M, Seale NS, Hanawa T, Ferracane JL, Waite DE, Okabe T. Cytotoxicity of amalgams, alloys, and their elements and phases. Dent Mater. 1991 Jan;7(1):68-72.
37. Sarrami N, Pemberton MN, Thornhill MH, Theaker ED. Adverse reactions associated with the use of eugenol in dentistry. Br Dent J. 2002 Sep 14;193(5):257-9.
38. Ho YC, Huang FM, Chang YC. Mechanisms of cytotoxicity of eugenol in human osteoblastic cells in vitro. Int Endod J. 2006 May;39(5):389-93.
39. Saba JN, Siddiqui DA, Rodriguez LC, Sridhar S, Rodrigues DC. Investigation of the corrosive effects of dental cements on titanium. Journal of Bio-and Tribo-Corrosion. 2017 Jun;3:1-7.
40. Czekanska EM, Stoddart MJ, Ralphs JR, Richards RG, Hayes JS. A phenotypic comparison of osteoblast cell lines versus human primary osteoblasts for biomaterials testing. J Biomed Mater Res A. 2014 Aug;102(8):2636-43.
IssueVol 22 (Continuously Published Article-Based) QRcode
SectionOriginal Article
Keywords
Materials Testing Dental Cements Cytotoxicity Tests Immunologic Titanium; Zinc Oxide-Eugenol Cement

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Yaghobee S, Aslroosta H, Hasannia S, Poursafar F. In Vitro Comparison of the Viability and Proliferation of Human Gingival Fibroblasts and Osteoblast-like MG-63 Cells on Three Different Temporary Cements Used in Dental Implants. Front Dent. 2025;22.