Comparison of Photodynamic Therapy and Air Abrasion for Implant Surface Decontamination with Laser Treatment in Terms of Efficacy and Implant Surface Alterations: A Systematic Review
Abstract
Objectives: Considering the shortcomings of the currently applied mechanical and chemical methods for implant surface decontamination, this study compared the efficacy of three decontamination methods and their impact on implant surface.
Materials and Methods: This systematic review was conducted based on the PRISMA guidelines, with searches performed in PubMed, Scopus, and Web of Science databases. The inclusion criteria were English-language animal, in vivo, and in vitro studies on the effects of photodynamic therapy (PDT), laser treatment, and air abrasion on implant surface changes or microbial load.
Results: Of 1,076 initially retrieved articles, 30 studies were fully reviewed; out of which, 20 met the inclusion criteria. One study found that erbium-doped yttrium-aluminum-garnet (Er:YAG) laser and air abrasion were equally effective in reducing the microbial load, but seven studies favored laser treatment. Five studies noted minor surface changes with air abrasion, while three reported more changes with laser. Regarding biocompatibility, eight studies favored laser; while, three found both methods effective. In six studies, Er:YAG laser was more effective than PDT in reducing the microbial load, with five studies also showing better preservation of implant integrity. Both methods were biocompatible, but laser treatment was superior in preserving cell viability, with three studies favoring it over PDT. Additionally, PDT outperformed air abrasion in reducing the microbial load, preserving the implant surface, and enhancing biocompatibility.
Conclusion: Both PDT and laser therapy are effective in reducing the microbial load. Additionally, laser causes the least surface alterations, with some studies reporting minor improvements in implant surface properties.
2. Cosgarea R, Sculean A, Shibli JA, Salvi GE. Prevalence of peri-implant diseases - a critical review on the current evidence. Braz Oral Res. 2019 sep;33(Suppl 1):e063.
3. Romanos GE, Javed F, Delgado-Ruiz RA, Calvo-Guirado JL. Peri-implant diseases: a review of treatment interventions. Dent Clin North Am. 2015 Jan;59(1):157-78.
4. Figuero E, Graziani F, Sanz I, Herrera D, Sanz M. Management of peri-implant mucositis and peri-implantitis. Periodontol 2000. 2014 Oct;66(1):255-73.
5. Rokaya D, Srimaneepong V, Wisitrasameewon W, Humagain M, Thunyakitpisal P. Peri-implantitis update: Risk indicators, diagnosis, and treatment. Eur J Dent. 2020 Oct;14(4):672-82.
6. Saffarpour A, Nozari A, Fekrazad R, Saffarpour A, Heibati MN, Iranparvar K. Microstructural evaluation of contaminated implant surface treated by laser, photodynamic therapy, and chlorhexidine 2 percent. Int J Oral Maxillofac Implants. 2018 Sep/Oct;33(5):1019-26.
7. Ntrouka VI, Slot DE, Louropoulou A, Van der Weijden F. The effect of chemotherapeutic agents on contaminated titanium surfaces: a systematic review. Clin Oral Implants Res. 2011 Jul;22(7):681-90.
8. Htet M, Madi M, Zakaria O, Miyahara T, Xin W, Lin Z, et al. Decontamination of anodized implant surface with different modalities for peri-implantitis treatment: Lasers and mechanical debridement with citric acid. J Periodontol. 2016 Aug;87(8):953-61.
9. Romanos GE. Lasers and Implants. In: Romanos GE, editor. Advanced Laser Surgery in Dentistry. Springer; Switzerland; 2021 Jan. 185-207.
10. Kubasiewicz-Ross P, Fleischer M, Pitułaj A, Hadzik J, Nawrot-Hadzik I, Bortkiewicz O, et al. Evaluation of the three methods of bacterial decontamination on implants with three different surfaces. Adv Clin Exp Med. 2020 Feb;29(2):177-82.
11. Kwaśniak P, Pura J, Zwolińska M, Wieciński P, Skarżyński H, Olszewski L, et al. Laser and chemical surface modifications of titanium grade 2 for medical application. Appl Surf Sci. 2015 May;336:267–73.
12. Deppe H. CO2 laser therapy of peri-implant infections - Basics and therapeutic recommendations. Aesthet Zahnmed. 2005 Jan;8(1):50-4.
13. Kuo HN, Mei HI, Liu TK, Liu TY, Lo LJ, Lin CL. In vitro laser treatment platform construction with dental implant thread surface on bacterial adhesion for peri-Implantitis. Biomed Res Int. 2017;2017:4732302.
14. Huang P, Chen X, Chen Z, Chen M, He J, Peng L. Efficacy of Er:YAG laser irradiation for decontamination and its effect on biocompatibility of different titanium surfaces. BMC Oral Health. 2021 Dec ;21(1):649.
15. Pranno N, Cristalli MP, Mengoni F, Sauzullo I, Annibali S, Polimeni A, et al. Comparison of the effects of air-powder abrasion, chemical decontamination, or their combination in open-flap surface decontamination of implants failed for peri-implantitis: an ex vivo study. Clin Oral Investig. 2021 May;25(5):2667-76.
16. Louropoulou A, Slot DE, Van der Weijden F. Influence of mechanical instruments on the biocompatibility of titanium dental implants surfaces: a systematic review. Clin Oral Implants Res. 2015 Jul;26(7):841-50.
17. Ohba S, Sato M, Noda S, Yamamoto H, Egahira K, Asahina I. Assessment of safety and efficacy of antimicrobial photodynamic therapy for peri-implant disease. Photodiagnosis Photodyn Ther. 2020 Sep;31:101936.
18. Schwarz F, Ferrari D, Popovski K, Hartig B, Becker J. Influence of different air-abrasive powders on cell viability at biologically contaminated titanium dental implants surfaces. J Biomed Mater Res B Appl Biomater. 2009 Jan;88(1):83-91.
19. Eick S, Meier I, Spoerlé F, Bender P, Aoki A, Izumi Y, et al. In vitro activity of Er:YAG laser in comparison with other treatment modalities on biofilm ablation from implant and tooth surfaces. PLoS One. 2017 Jan;12(1):e0171086.
20. Moharrami M, Perrotti V, Iaculli F, Love RM, Quaranta A. Effects of air abrasive decontamination on titanium surfaces: A systematic review of in vitro studies. Clin Implant Dent Relat Res. 2019 Apr;21(2):398-421.
21. Batalha VC, Bueno RA, Fronchetti Junior E, Mariano JR, Santin GC, Freitas KMS, et al. Dental implants surface in vitro decontamination protocols. Eur J Dent. 2021 Jul;15(3):407-11.
22. Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann Intern Med. 2018 Oct;169(7):467-73.
23. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336-41.
24. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011 Oct;343:d5928.
25. Falci SG, Marques LS. CONSORT: when and how to use it. Dental Press J Orthod. 2015 May-Jun;20(3):13-5.
26. Schmidt L, Shokraneh F, Steinhausen K, Adams CE. Introducing RAPTOR: RevMan parsing tool for reviewers. Syst Rev. 2019 Jun;8(1):151.
27. Sheth VH, Shah NP, Jain R, Bhanushali N, Bhatnagar V. Development and validation of a risk-of-bias tool for assessing in vitro studies conducted in dentistry: The QUIN. J Prosthet Dent. 2024 Jun;131(6):1038-42.
28. Stein JM, Conrads G, Abdelbary MMH, Yekta-Michael SS, Buttler P, Glock J, et al. Antimicrobial efficiency and cytocompatibility of different decontamination methods on titanium and zirconium surfaces. Clin Oral Implants Res. 2023 Jan;34(1):20-32.
29. Kreisler M, Kohnen W, Christoffers AB, Götz H, Jansen B, Duschner H, et al. In vitro evaluation of the biocompatibility of contaminated implant surfaces treated with an Er : YAG laser and an air powder system. Clin Oral Implants Res. 2005 Feb;16(1):36-43.
30. Schmage P, Thielemann J, Nergiz I, Scorziello TM, Pfeiffer P. Effects of 10 cleaning instruments on four different implant surfaces. Int J Oral Maxillofac Implants. 2012 Mar-Apr;27(2):308-17.
31. Amid R, Kadkhodazadeh M, Mojahedi SM, Gilvari Sarshari M, Zamani Z. Physicochemical changes of contaminated titanium discs treated with erbium-doped yttrium aluminum garnet (Er:YAG) laser irradiation or air-flow abrasion: An in vitro study. J Lasers Med Sci. 2021 Nov;12:e67.
32. Hakki SS, Tatar G, Dundar N, Demiralp B. The effect of different cleaning methods on the surface and temperature of failed titanium implants: an in vitro study. Lasers Med Sci. 2017 Apr;32(3):563-71.
33. Kadkhodazadeh M, Amid R, Gilvari Sarshari M, Mojahedi M, Parhizkar A. A comparison of human dental pulp stem cell activity cultured on sandblasted titanium discs decontaminated with Er:YAG laser and air-powder abrasion: an in vitro study. Lasers Med Sci. 2022 Oct;37(8):3259-68.
34. Chen CJ, Ding SJ, Chen CC. Effects of surface conditions of titanium dental implants on bacterial adhesion. Photomed Laser Surg. 2016 Sep;34(9):379-88.
35. Saffarpour A, Fekrazad R, Heibati MN, Bahador A, Saffarpour A, Rokn AR, et al. Bactericidal effect of erbium-doped yttrium aluminum garnet laser and photodynamic therapy on Aggregatibacter actinomycetemcomitans biofilm on implant surface. Int J Oral Maxillofac Implants. 2016 May-Jun;31(3):e71-8.
36. Kubasiewicz-Ross P, Hadzik J, Gedrange T, Dominiak M, Jurczyszyn K, Pitułaj A, et al. Antimicrobial efficacy of different decontamination methods as tested on dental implants with various types of surfaces. Med Sci Monit. 2020 Feb;26:e920513.
37. Vaddamanu SK, Vyas R, Kavita K, Sushma R, Rani RP, Dixit A, et al. An in vitro study to compare dental laser with other treatment modalities on biofilm ablation from implant and tooth surfaces. J Pharm Bioallied Sci. 2022 Jul;14(Suppl 1):S530-3.
38. Giannelli M, Pini A, Formigli L, Bani D. Comparative in vitro study among the effects of different laser and LED irradiation protocols and conventional chlorhexidine treatment for deactivation of bacterial lipopolysaccharide adherent to titanium surface. Photomed Laser Surg. 2011 Aug;29(8):573-80.
39. Birang E, Birang R, Narimani T, Tolouei A, Fekrazad R. Investigation of the antibacterial effect of laser irradiation and chemical agent on human oral biofilms contaminated titanium discs. Photodiagnosis Photodyn Ther. 2019 Mar;25:259-64.
40. Birang R, Shakerian K, Birang E, Narimani T, Naghsh N, Fekrazad R. Comparison of antimicrobial effect of several decontaminating methods on contaminated Titanium discs. Dent Res J (Isfahan). 2022 Dec;19:111.
41. Gümüş KÇ, Ustaoğlu G, Kara L, Ercan E, Albayrak Ö, Tunali M. Nano-nydroxyapatite airborne-particle abrasion system as an alternative surface treatment method on intraorally contaminated titanium discs. Int J Periodontics Restorative Dent. 2020 Jul/Aug;40(4):e179-87.
42. El Chaar E, Almogahwi M, Abdalkader K, Alshehri A, Cruz S, Ricci J. Decontamination of the infected implant surface: A scanning electron microscope study. Int J Periodontics Restorative Dent. 2020 May-Jun;40(3):395-401.
43. Otsuki M, Wada M, Yamaguchi M, Kawabata S, Maeda Y, Ikebe K. Evaluation of decontamination methods of oral biofilms formed on screw-shaped, rough and machined surface implants: an ex vivo study. Int J Implant Dent. 2020 Apr;6(1):18.
44. Kormas I, Pedercini C, Pedercini A, Raptopoulos M, Alassy H, Wolff LF. Peri-implant diseases: diagnosis, clinical, histological, microbiological characteristics and treatment strategies. A narrative review. Antibiotics (Basel). 2020 Nov;9(11):835.
45. Mellado-Valero A, Buitrago-Vera P, Solá-Ruiz MF, Ferrer-García JC. Decontamination of dental implant surface in peri-implantitis treatment: a literature review. Med Oral Patol Oral Cir Bucal. 2013 Nov;18(6):e869-76.
46. Dhaliwal JS, Abd Rahman NA, Ming LC, Dhaliwal SKS, Knights J, Albuquerque Junior RF. Microbial biofilm decontamination on dental implant surfaces: A mini review. Front Cell Infect Microbiol. 2021 Oct;11:736186.
47. Ramanauskaite A, Schwarz F, Cafferata EA, Sahrmann P. Photo/mechanical and physical implant surface decontamination approaches in conjunction with surgical peri-implantitis treatment: A systematic review. J Clin Periodontol. 2023 Jun;50 Suppl 26:317-35.
| Issue | Vol 22 (Continuously Published Article-Based) | |
| Section | Review Article | |
| Keywords | ||
| Air Abrasion Dental Decontamination Dental Implants Laser Therapy Photochemotherapy | ||
| Rights and permissions | |
|
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |

