Original Article

Antimicrobial Effect of Different Sizes of Nano Zinc Oxide on Oral Microorganisms

Abstract

Objectives: The purpose of the present study was to evaluate the antimicrobial effect of various sizes and concentrations of zinc oxide (ZnO) nanoparticles on Streptococcus mutans (SM), Enterococcus faecalis (EF), Lactobacillus fermentum (LF), and Candida albicans (CA).
Materials and Methods: Solutions at the concentration of 10 µg/ml were prepared using 20-nm, 40-nm, and 140-nm nano ZnO (nZnO) powder.
The antimicrobial effect of nZnO was determined using the disk diffusion method. The inhibition zone (mm) was measured using a ruler. Data were analyzed by analysis of variance (ANOVA) and the Bonferroni correction. The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of nZnO were determined using the broth microdilution method in Mueller-Hinton Agar (MHA) for SM and EF, De Man, Rogosa, and Sharpe (MRS) agar, and Sabouraud Dextrose Agar (SDA).
Results: The greatest inhibition zones were observed against SM with 20-nm and 40-nm nZnO, while 140-nm nZnO formed the greatest inhibition zones against SM and EF. The smallest inhibition zones were observed against CA with the three nZnO particle sizes. The MICs for CA with 40-nm and 140-nm particles and for LF with 140-nm particles were higher than 10 µg/ml. A significant correlation was found between the particle size and the antibacterial activity against SM (P=0.00), LF, and EF (P<0.02).
Conclusions: The antimicrobial activity of nZnO increases with decreasing the particle size. The greatest antimicrobial effect was observed against SM and EF. SM is more sensitive to the changes in the particle size compared to other bacteria.

1. Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006 Feb 3311(5761):622-7.
2. Yousef JM, Danial EN. In Vitro Antibacterial Activity and Minimum Inhibitory Concentration of Zinc Oxide and Nano-particle Zinc Oxide against Pathogenic Strains. J Health Sci. 2012;2(4):38-42.
3. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine: NBM. 2007 Mar3(1):95-101.
4. Baxter JB, Aydil ES. Nanowire-based dye-sensitized solar cells. Appl Phys Lett. 2005 Jan86(5):053114.
5. Opdam NJ, Bronkhorst EM, Roeters JM, Loomans BA. A retrospective clinical study on longevity of posterior composite and amalgam restorations. Dent Mater. 2007 Jan;23(1):2-8.
6. Burne RA. Oral streptococci… products of their environment. J Dent Res. 1998 Mar;77(3):445-52.
7. Mirhashemi AH, Bahador A, Kassaee MZ, Daryakenari G, Ahmad Akhoundi MS, Sodagar A. Antimicrobial effect of nano-zinc oxide and nano-chitosan particles in dental composite used in orthodontics. J Med Bacteriol. 2013;2(3-4):1-10.
8. Islam B, Khan SN, Khan AU. Dental caries: from infection to prevention. Med Sci Monit. 2007 Nov;13(11):RA196-203.
9. Hernandez-Sierra JF, Ruiz F, Pena DC, Martinez-Gutierrez F, Martinez AE, Guillen Ade J, et al. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine. 2008 Sep;4(3):237-40.
10. Xu T, Xie CS. Tetrapod-like nano-particle ZnO/acrylic resin composite and its multi-function property. Prog Org Coat. 2003 Jun;46(4):297-301.
11. Imazato S, Ebi N, Takahashi Y, Kaneko T, Ebisu S, Russell RR. Antibacterial activity of bactericide-immobilized filler for resin-based restoratives. Biomaterials. 2003 Sep;24(20): 3605-9.
12. Yamamoto K, Ohashi S, Aono M, Kokubo T, Yamada I, Yamauchi J. Antibacterial activity of silver ions implanted in SiO2 filler on oral streptococci. Dent Mater. 1996 Jul;12(4):227-9.
13. Syafiuddin T, Hisamitsu H, Toko T, Igarashi T, Goto N, Fujishima A, et al. In vitro inhibition of caries around a resin composite restoration containing antibacterial filler. Biomaterials. 1997 Aug;18(15):1051-7.
14. Sodagar A, Bahador A, Khalil S, Shahroudi AS, Kassaee MZ. The effect of TiO2 and SiO2 nanoparticles on flexural strength of poly (methyl methacrylate) acrylic resins. J Prosthodont Res. 2013 Jan;57(1):15-9.
15. Leung D, Spratt DA, Pratten J, Gulabivala K, Mordan NJ, Young AM. Chlorhexidine-releasing methacrylate dental composite materials. Biomaterials. 2005 Dec;26(34):7145-53.
16. Jedrychowski JR, Caputo AA, Kerper S. Antibacterial and mechanical properties of restorative materials combined with chlorhexidines. J Oral Rehabil. 1983 Sep;10(5): 373-81.
17. Tavassoli Hojati S, Alaghemand H, Hamze F, Ahmadian Babaki F, Rajab-Nia R, Rezvani MB, et al. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent Mater. 2013 May;29(5):495-505.
18. Smith SI, Aweh AJ, Coker AO, Savage KO, Abosede DA, Oyedeji KS. Lactobacilli in human
dental caries and saliva. Microbios. 2001;105(411):77-85.
19. Caufield PW, Li Y, Dasanayake A, Saxena D. Diversity of lactobacilli in the oral cavities of young women with dental caries. Caries Res. 2007;41(1):2-8.
20. Stecksén-Blicks C. Salivary counts of lactobacilli and Streptococcus mutans in caries prediction. Scand J Dent Res. 1985 Jun;93(3):204-12.
21. van Houte J, Lopman J, Kent R. The predominant cultivable flora of sound and carious human root surfaces. J Dent Res. 1994 Nov;73(11):1727-34.
22. Köll-Klais P, Mandar R, Leibur E, Marcotte H, Hammarstrom L, Mikelsaar M. Oral lactobacilli in chronic periodontitis and periodontal health: species composition and antimicrobial activity. Oral Microbiol Immunol. 2005 Dec;20(6):354-61.
23. Andrzejewska E, Szkaradkiewicz AK. Antagonistic effect of Lactobacillus acidophilus to selected periodontopathogens [in Polish]. XXVII Congress of the Polish Society of Microbiologists. September 5-8, 2012; Lublin, Poland. Scientific Materials.
24. Szkaradkiewicz AK, Karpinski TM, Zeidler A, Wyganowska-Swiatkowska M, Szkaradkiewicz A. Protective effect of oral lactobacilli in pathogenesis of chronic periodontitis. J Physiol Pharmacol. 2011 Dec;62(6):685-9.
25. Ryan CS, Kleinberg I. Bacteria in human mouths involved in the production and utilization of hydrogen peroxide. Arch Oral Biol. 1995 Aug;40(8):753-63.
26. Lin MY, Yen CL. Antioxidative ability of lactic acid bacteria. J Agric Food Chem.1999 Apr;47(4):1460-6.
27. Klaenhammer TR. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993 Sep;12(1-3):39-85.
28. Strahinic I, Busarcevic M, Pavlica D, Milasin J, Golic N, Topisirovic L. Molecular and biochemical characterizations of human oral lactobacilli as putative probiotic candidates. Oral Microbiol Immunol. 2007 Apr;22(2):111-7.
29. Słońska A, Klimuszko D. Bacteriocins of probiotic rods of the Lactobacillus genus [in Polish]. Post Mikrobiol. 2010;40(2):87-96.
30. Molander A, Reit C, Dahlen G. The antimicrobial effect of calcium hydroxide in root canals pretreated with 5% iodine potassium iodide. Endod Dent Traumatol. 1999 Oct;15(5):205-9.
31. Portenier I, Haapasalo H, Orstavik D, Yamauchi M, Haapasalo M. Inactivation of the antibacterial activity of iodine potassium iodide and chlorhexidine digluconate against Enterococcus faecalis by dentin, dentin matrix, type-I collagen, and heat-killed microbial whole cells. J Endod. 2002 Sep;28(9):634-7.
32. Dahlen G, Samuelsson W, Molander A, Reit C. Identification and antimicrobial susceptibility of enterococci isolated from the root canal. Oral Microbiol Immunol. 2000 Oct;15(5):309-12.
33. Kayaoglu G, Erten H, Alacam T, Ørstavik D. Short-term antibacterial activity of root canal sealers towards Enterococcus faecalis. Int Endod J. 2005 Jul;38(7):483-8.
34. Distel JW, Hatton JF, Gillespie MJ. Biofilm formation in medicated root canals. J Endod. 2002 Oct;28(10):689-93.
35. George S, Kishen A, Song KP. The role of environmental changes on monospecies biofilm formation on root canal wall by Enterococcus faecalis. J Endod. 2005 Dec;31(12):867-72.
36. Kishen A, George S, Kumar R. Enterococcus faecalis-mediated biomineralized biofilm formation on root canal dentine in vitro. J Biomed Mater Res A. 2006 May;77(2):406-15.
37. Love RM. Enterococcus faecalis--a mechanism for its role in endodontic failure. Int Endod J. 2001 Jul;34(5):399-405.
38. Gopikrishna AV, Kandaswamy D, Jeyavel RK. Comparative evaluation of the antimicrobial efficacy of five endodontic root canal sealers against Enterococcus faecalis and Candida albicans. J Conserv Dent. 2006;9(1):2-12.
39. Shepherd MG. The pathogenesis and host defence mechanisms of oral candidosis. NZ Dent J. 1986;82:78-82.
40. de Carvalho FG, Silva DS, Hebling J, Spolidorio LC, Spolidorio DM. Presence of mutans streptococci and Candida spp. in dental plaque/dentine of carious teeth and early childhood caries. Arch Oral Biol. 2006;51(11):1024-8.
41. Palanikumar L, Ramasamy SN, Balachandran C. Size-dependent antimicrobial response of zinc oxide nanoparticles. IET Nanobiotechnol. 2014 Jun8(2):111-7.
42. Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv. 2010 Sep7(9):1063-77.
43. Seil JT, Taylor EN, Webster TJ. Reduced activity of Staphylococcus epidermidis in the presence of sonicated piezoelectric zinc oxide nanoparticles. 2009 IEEE 35th Annual Northeast Bioengineering Conference, Boston, MA, USA. Available at: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4967674&isnumber=4967618 / Accessed January 12, 2018.
44. Zhang H, Chen B, Jiang H, Wang C, Wang H, Wang X. A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials. 2011 Mar32(7):1906-14.
45. Padmavathy N, Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci Technol Adv Mater. 2008 Sep 19(3):035004.
46. Zhang L, Jiang Y, Ding Y, Povey M, York D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res. 2007 Jun;9(3):479-89.
47. Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater. 2001 Nov3(7):643-6.
48. Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett. 2008 Feb279(1):71-6.
49. Raghupathi KR, Koodali RT, Manna AC. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011 Mar27(7): 4020-8.
50. Emami-Karvani Z, Chehrazi P. Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. Afr J Microbiol Res. 2011 Jun5(12):1368-73.
51. Bernstein MP, Sandford SA, Allamandola LJ, Chang S. Infrared spectrum of matrix-isolated hexamethylenetetramine in Ar and H2O at cryogenic temperatures. J Phys Chem. 1994 Nov98(47):12206-10.
52. Kasraei S, Sami L, Hendi S, Alikhani MY, Rezaei-Soufi L, Khamverdi Z. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor Dent Endod. 2014 May;39(2):109-14.
53. Ghaderian HS, Mohammadi Sichani M, Sichani, Yousefi MH. Antibacterial Activity of ZnO Nanoparticles and Filters Coated with ZnO Nanoparticles on Eliminating Escherichia coli and Enterococcus faecalis. [Abstract only]. Wastewater J Iran. 2015;8(2):36-9.
54. He L, Liu Y, Mustapha A, Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res. 2011 Mar 20166(3):207-15.
55. Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, et al. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals. 2009 Apr22(2):235-42.
Files
IssueVol 16, No 2 (2019) QRcode
SectionOriginal Article
DOI https://doi.org/10.18502/fid.v16i2.1361
Keywords
Zinc Oxide Disk Diffusion Antimicrobial Tests Nanoparticles

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Mirhosseini F, Amiri M, Daneshkazemi A, Zandi H, Javadi ZS. Antimicrobial Effect of Different Sizes of Nano Zinc Oxide on Oral Microorganisms. Front Dent. 2019;16(2):105-112.

Most read articles by the same author(s)