Shear Bond Strength of Molar Tubes to Enamel Using an Orthodontic Resin-Modified Glass Ionomer Cement Modified with Amorphous Calcium Phosphate
Abstract
Objectives: This study aimed to assess the shear bond strength (SBS) of molar tubes to the enamel surface of molar teeth using a resin-modified glass ionomer (RMGI) cement modified with amorphous calcium phosphate (ACP).
Materials and Methods: In this in-vitro study, 60 extracted human third molars were randomly divided into four groups for bonding of molar tubes to the enamel surface. Fuji Ortho LC and Fuji Ortho LC modified with ACP (1.55 wt%) were used in groups 1 and 2, respectively. In group 3, the enamel surface was sandblasted, and bonding was then performed using Fuji Ortho LC glass ionomer modified with ACP. In group 4, molar tubes were conventionally bonded using Transbond XT composite. The SBS was measured using a universal testing machine.
Results: The mean SBS of groups 1 to 4 was 10.22, 6.88, 9.4, and 13.68 MPa, respectively. Only the SBS of group 1 was not significantly different from that of groups 3 and 4 (P>0.05). Comparison of adhesive remnant index (ARI) scores of the groups revealed significant differences only between groups 1 and 4 (P<0.001) and between groups 1 and 2 (P=0.002).
Conclusion: The results revealed that the addition of ACP to Fuji Ortho LC significantly decreased the SBS of molar tubes bonded to enamel compared to the conventional resin bonding system. Sandblasting of the enamel surface significantly increased the bond strength. Fuji Ortho LC modified with ACP is recommended for bonding of molar tubes to posterior teeth considering its cariostatic property.
2. Boersma JG, Van der Veen MH, Lagerweij MD, Bokhout B, Prahl-Andersen B. Caries prevalence measured with QLF after treatment with fixed orthodontic appliances: influencing factors. Caries Res. 2005 Jan-Feb;39(1):41-7.
3. Gorelick L, Geiger AM, Gwinnett AJ. Incidence of white spot formation after bonding and banding. Am J Orthod. 1982 Feb;81(2):93-8.
4. Khalaf K. Factors Affecting the Formation, Severity and Location of White Spot Lesions during Orthodontic Treatment with Fixed Appliances. J Oral Maxillofac Res. 2014 Apr 1;5(1):e4.
5. Lucchese A, Gherlone E. Prevalence of white-spot lesions before and during orthodontic treatment with fixed appliances. Eur J Orthod. 2013 Oct;35(5):664-8.
6. Yengopal V, Mickenautsch S. Caries preventive effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP): a meta-analysis. Acta Odontol Scand. 2009;67(6):321-32.
7. Reynolds EC. Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized calcium phosphate solutions. J Dent Res. 1997 Sep;76(9):1587-95.
8. Zhao J, Liu Y, Sun WB, Zhang H. Amorphous calcium phosphate and its application in dentistry. Chem Cent J. 2011 Jul 8;5:40.
9. Dorozhkin SV. Amorphous calcium (ortho)phosphates. Acta Biomater. 2010 Dec;6(12):4457-75.
10. Skrtic D, Antonucci JM, Eanes ED. Amorphous calcium phosphate-based bioactive polymeric composites for mineralized tissue regeneration. J Res Natl Inst Stand Technol. 2003 Jun 1;108(3):167-82.
11. Uysal T, Yilmaz E, Ramoglu SI. Amorphous calcium phosphate-containing orthodontic cement for band fixation: an in vitro study. World J Orthod. 2010 Summer;11(2):129-34.
12. Melo MA, Cheng L, Zhang K, Weir MD, Rodrigues LK, Xu HH. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dent Mater. 2013 Feb;29(2):199-210.
13. Zalizniak I, Palamara JE, Wong RH, Cochrane NJ, Burrow MF, Reynolds EC. Ion release and physical properties of CPP-ACP modified GIC in acid solutions. J Dent. 2013 May;41(5):449-54.
14. Al Zraikat H, Palamara JE, Messer HH, Burrow MF, Reynolds EC. The incorporation of casein phosphopeptide-amorphous calcium phosphate into a glass ionomer cement. Dent Mater. 2011 Mar;27(3):235-43.
15. Nagaraja Upadhya P, Kishore G. Glass ionomer cement - The different generations. Trends Biomater Artif Organs. 2005;18(2):158-65.
16. Friedl KH, Schmalz G, Miller KA, Shams M. Resin‐modified glass ionomer cements: fluoride release and influence on Streptococcus mutans growth. Eur J Oral Sci. 1997 Feb;105(1):81-5.
17. Chung CK, Millett DT, Creanor SL, Gilmour WH, Foye RH. Fluoride release and cariostatic ability of a compomer and a resin-modified glass ionomer cement used for orthodontic bonding. J Dent. 1998 Jul-Aug;26(5-6):533-8.
18. Gaworski M, Weinstein M, Borislow AJ, Braitman LE. Decalcification and bond failure: A comparison of a glass ionomer and a composite resin bonding system in vivo. Am J Orthod Dentofacial Orthop. 1999 Nov;116(5):518-21.
19. Yassaei S, Davari A, Goldani Moghadam M, Kamaei A. Comparison of shear bond strength of RMGI and composite resin for orthodontic bracket bonding. J Dent (Tehran). 2014 May;11(3):282-89.
20. Bishara SE, Olsen ME, Damon P, Jakobsen JR. Evaluation of a new light-cured orthodontic bonding adhesive. Am J Orthod Dentofacial Orthop. 1998 Jul;114(1):80-7.
21. Jafari A, Shahabi S, Chiniforush N, Shariat A. Comparison of the shear bond strength of resin modified glass ionomer to enamel in bur-prepared or lased teeth (Er:YAG). J Dent (Tehran). 2013 Mar;10(2):119-23.
22. Godoy-Bezerra J, Vieira S, Oliveira JH, Lara F. Shear bond strength of resin-modified glass ionomer cement with saliva present and different enamel pretreatments. Angle Orthod. 2006 May;76(3):470-4.
23. van Waveren Hogervorst WL, Feilzer AJ, Prahl-Andersen B. The air-abrasion technique versus the conventional acid-etching technique: A quantification of surface enamel loss and a comparison of shear bond strength. Am J Orthod Dentofacial Orthop. 2000 Jan;117(1):20-6.
24. Ulusoy Ç, Irmak Ö, Bağiş YH, Ulusoy Öİ. Temperature rise and shear bond strength of bondable buccal tubes bonded by various light sources. Eur J Orthod. 2008 Aug;30(4):413-7.
25. Canay S, Kocadereli I, Ak"ca E. The effect of enamel air abrasion on the retention of bonded metallic orthodontic brackets. Am J Orthod Dentofacial Orthop. 2000 Jan;117(1):15-9.
26. Newman GV, Newman RA, Sun BI, Ha JL, Ozsoylu SA. Adhesion promoters, their effect on the bond strength of metal brackets. Am J Orthod Dentofacial Orthop. 1995 Sep;108(3):237-41.
27. Kim SS, Park WK, Son WS, Ahn HS, Ro JH, Kim YD. Enamel surface evaluation after removal of orthodontic composite remnants by intraoral sandblasting: a 3-dimensional surface profilometry study. Am J Orthod Dentofacial Orthop. 2007 Jul;132(1):71-6.
28. Millett DT, Letters S, Roger E, Cummings A, Love J. Bonded molar tubes--an in vitro evaluation. Angle Orthod. 2001 Oct;71(5):380-5.
29. Sharma S, Tandon P, Nagar A, Singh GP, Singh A, Chugh VK. A comparison of shear bond strength of orthodontic brackets bonded with four different orthodontic adhesives. J Orthod Sci. 2014 Apr;3(2):29-33.
30. Johnston CD, Burden DJ, Hussey DL, Mitchell CA. Bonding to molars--the effect of etch time (an in vitro study). Eur J Orthod. 1998 Apr;20(2):195-9.
31. Hobson RS, Rugg-Gunn AJ, Booth TA. Acid-etch patterns on the buccal surface of human permanent teeth. Arch Oral Biol. 2002 May;47(5):407-12.
32. Knoll M, Gwinnett AJ, Wolff MS. Shear strength of brackets bonded to anterior and posterior teeth. Am J Orthod. 1986 Jun;89(6):476-9.
33. Sunna S, Rock WP. Effect of sandblasting on the retention of orthodontic brackets: a controlled clinical trial. J Orthod. 2008 Mar;35(1):43-8.
34. Powers JM, Kim HB, Turner DS. Orthodontic adhesives and bond strength testing. Semin Orthod. 1997 Sep;3(3):147-56.
35. Trimpeneers LM, Verbeeck RMH, Dermaut LR, Moors MG. Comparative shear bond strength of some orthodontic bonding resins to enamel. Eur J Orthod. 1996 Feb;18(1):89-95.
36. Heravi F, Omidkhoda M, Koohestanian N, Hooshmand T, Bagheri H, Ghaffari N. Retentive Strength of Orthodontic Bands Cemented with Amorphous Calcium Phosphate-Modified Glass Ionomer Cement: An In-Vitro Study. J Dent (Tehran). 2017 Jan;14(1):13-20.
37. Årtun J, Brobakken BO. Prevalence of carious white spots after orthodontic treatment with multibonded appliances. Eur J Orthod. 1986 Nov;8(4):229-34.
38. Dandachli MG. Bond failure rate of MBT brackets bonded with either self-etching primer or resin modified glass ionomer vs conventional method - an in vivo study. Dent Med Probl. 2015 Jan;52(4):440-6.
39. Mickenautsch S, Yengopal V, Banerjee A. Retention of orthodontic brackets bonded with resin-modified GIC versus composite resin adhesives--a quantitative systematic review of clinical trials. Clin Oral Investig. 2012 Feb;16(1):1-14.
40. Summers A, Kao E, Gilmore J, Gunel E, Ngan P. Comparison of bond strength between a conventional resin adhesive and a resin-modified glass ionomer adhesive: an in vitro and in vivo study. Am J Orthod Dentofacial Orthop. 2004 Aug;126(2):200-6; quiz 254-5.
41. Elnafar AAS, Alam MK, Hassan R, Purmal K. Enamel surface preparations and shear bond strength of orthodontic brackets: a review. Int Med J. 2015 Jun;22(3):194-8.
42. Uysal T, Amasyali M, Koyuturk AE, Sagdic D. Efficiency of amorphous calcium phosphate-containing orthodontic composite and resin modified glass ionomer on demineralization evaluated by a new laser fluorescence device. Eur J Dent. 2009 Apr;3(2):127-34.
43. Piekarz C, Ranjitkar S, Hunt D, McIntyre J. An in vitro assessment of the role of Tooth Mousse in preventing wine erosion. Aust Dent J. 2008 Mar;53(1):22-5.
44. Uysal T, Ustdal A, Nur M, Catalbas B. Bond strength of ceramic brackets bonded to enamel with amorphous calcium phosphate-containing orthodontic composite. Eur J Orthod. 2010 Jun;32(3):281-4.
Files | ||
Issue | Vol 16, No 5 (2019) | |
Section | Original Article | |
DOI | https://doi.org/10.18502/fid.v16i5.2286 | |
Keywords | ||
Shear Strength Fuji Ortho LC Glass Ionomer Cements Amorphous Calcium Phosphate |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |